

Center of Computational Materials Science



#### CCMSハンズオン: RESPACK講習会 (TIA"かけはし"連携講座)

#### 中村和磨(九州工業大学大学院基礎科学研究系)

日時: 2019年3月1日(金) 13:30-17:00 東京大学柏の葉キャンパス駅前サテライト205号室

# RESPACK

Welcome to homepage of RESPACK which is a free software of ab initio many-body perturbation codes including calculations for response function with random-phase approximation, Wannier function, and matrix-element evaluations of frequency-dependent screened direct and exchange interactions. Discussions and communications are always open and let us heap up this community together!

Download codes (20190226): <u>RESPACK-20190226.tar.gz</u> Download codes (20171220): <u>RESPACK-20171220.tar.gz</u> Download tutorial (20171220): <u>TUTORIAL.pptx</u> Download codes (20171014): <u>RESPACK-20171014.tar.gz</u>

Download manual (20171014): <u>MANUAL-20171014.pdf</u>

- □ Kazuma NAKAMURA, Associate Professor, Dr. Kyushu Institute of Technology
- □ Yoshihide YOSHIMOTO, Associate Professor, Dr. The University of Tokyo
- **D** Yoshiro NOHARA, Researcher, Dr
- □ Yusuke NOMURA, Research Associate, Dr. The University of Tokyo
- **D** Terumasa TADANO, ICYS researcher, Dr. National Institute for Materials Science
- D Mitsuaki KAWAMURA, Research Associate, Dr. The Institute for Solid State Physics
- □ Maxime CHARLEBOIS, Researcher, Dr. The University of Tokyo



#### 2018年度ソフトウェア開発・高度化課題プログラム

第一原理有効模型導出プログラムRESPACKと模型解析プログラムHΦ/mVMCの融合による非経験的強相関電子構造解析ソフトウェアの整備

Development of first principles electronic-structure calculation software by combining effective-model derivation code (RESPACK) and model-analysis codes (H $\Phi$ /mVMC)

#### $mVMC/H\Phi$

- □ Takahiro MISAWA, Project Researcher, Dr., issp-CCMS, The University of Tokyo
- □ Kazuyoshi YOSHIMI, Project reader, Dr., The Institute for Solid State Physics
- □ Yuichi MOTOYAMA, Researcher, Dr., The Institute for Solid State Physics
- D Mitsuaki KAWAMURA, Research Associate, Dr. The Institute for Solid State Physics

#### RESPACK

- Kazuma NAKAMURA, Associate Professor, Dr., Kyushu Institute of Technology
- □ Yoshihide YOSHIMOTO, Associate Professor, Dr., The University of Tokyo
- □ Yusuke NOMURA, Research Associate, Dr., The University of Tokyo
- **D** Terumasa TADANO, ICYS researcher, Dr., National Institute for Materials Science

#### **Methods**

#### 1. Maximally localized Wannier function

Marzari-Vanderbilt, Phys. Rev. B 56, 12847 (1997). Souza-Marzari-Vanderbilt, Phys. Rev. B 65, 035109 (2001). KN-Arita-Yoshimoto-Tsuneyuki, Phys. Rev. B 74, 235113 (2006).

#### 2. Dielectric function with random phase approximation

Hybertsen-Louie, Phys. Rev. B 35, 5585 (1987). KN-Nohara-Yosimoto-Nomura, Phys. Rev. B 93, 085124 (2016).

#### 3. Matrix-element evaluation of screened interaction

KN-Arita-Imada, J. Phys. Soc.jpn 77, 093711 (2008). Miyake-Aryasetiawan, Phys. Rev. B 77, 085122 (2008).

#### 4. GW spectral function

Hybertsen-Louie, Phys. Rev. B 34, 5390 (1986). KN-Nohara-Yosimoto-Nomura, Phys. Rev. B 93, 085124 (2016).

#### Targets

- Metals
- Semiconductors
- **D** Transition metal compounds
- □ Organic compounds, etc.

#### Physical quantities that can be calculated

- Maximally localized Wannier function (Wannier-interpolation band, real-space Wannier function, onsite-energy and transfer-integral parameters, etc)
- RPA response function (optical absorption spectrum, electron energy loss function, reflectance spectrum)
- □ Frequency-dependent electronic interaction parameters
- **GW** spectral function (almost finished)
- Extension to spinor format (developing)

License

GNU GPL v3

#### Supported OS/environments

- **D** Operate in UNIX environment
- □ Fortran 90 (intel Fortran, gfortran)
- □ MPI (OpenMPI, intelMPI), OpenMP

LAPACK

#### Parallelization

- Parallel job support (MPI, OpenMP)
- Confirmation of operation in System B at ISSP, Univ. Tokyo

#### **Related Applications**

#### as input data

- ➤ xTAPP
- Quantum ESPRESSO

NOTE: the norm-conserving pseudopotential should be used

#### **d**rawing

- VESTA (Wannier function)
- FermiSurfer (Fermi surface).

#### Prospect

 Superconducting transition temperature evaluation (electron-phonon coupling, the Coulomb pseudopotential)

#### Application 1: Fe-based superconductor

Comparison of *Ab initio* Low-Energy Models for LaFePO, LaFeAsO, BaFe<sub>2</sub>As<sub>2</sub>, LiFeAs, FeSe, and FeTe: Electron Correlation and Covalency

Takashi MIYAKE<sup>1,3,4\*</sup>, Kazuma NAKAMURA<sup>2,3,4</sup>, Ryotaro ARITA<sup>2,3,4</sup>, and Masatoshi IMADA<sup>2,3,4</sup>



#### Application 2: doped C<sub>60</sub>

Ab initio derivation of electronic low-energy models for C<sub>60</sub> and aromatic compounds

Yusuke Nomura,<sup>1</sup> Kazuma Nakamura,<sup>1,2</sup> and Ryotaro Arita<sup>1,2,3</sup>



#### Bottleneck

# Band calculation: Making input for <u>crystal structure</u> RESPACK: Making input for <u>initial guess of Wannier function</u>

| // Cl                   |                               |                                                      |
|-------------------------|-------------------------------|------------------------------------------------------|
| # file map data         | # main data                   | &param_chiqw                                         |
| &filemap                | &tappinput                    |                                                      |
| basename = 'Al',        | lattice_factor = 7.60         | &param_wannier                                       |
| number_PP_file = 1/     | LATTICE_LIST = 0.5, 0.5, 0.0, | N_wannier=9,                                         |
| ps-Al ps-Al.ichr        | 0.0, 0.5, 0.5,                | Lower_energy_window=-10.0d0,                         |
|                         | 0.5, 0.0, 0.5,                | Upper_energy_window=36.0d0,                          |
| # symmetry data         | cutoff_wave_function = 6.0,   | N_initial_guess=9/                                   |
| &SYMMETRY               | number_element = 1,           | s 0.2d0 0.00d0 0.00d0 0.00d0                         |
| SYMMETRY_FORMAT =       | number_atom = 1,              | px 0.2d0 0.00d0 0.00d0 0.00d0                        |
| 'reciprocal',           | number_band=50,               | py 0.2d0 0.00d0 0.00d0 0.00d0                        |
| NUMBER_SYM_OP = $48$ ,  | store_wfn = 1,                | pz 0.2d0 0.00d0 0.00d0 0.00d0                        |
| denom_trans = 1/        | initial_lpt=0,                | dxy 0.2d0 0.00d0 0.00d0 0.00d0                       |
| 1 0 0 0 1 0 0 0 1 0 0 0 | control_uptime = 3600,        | dyz 0.2d0 0.00d0 0.00d0 0.00d0                       |
|                         | SCF CONVERGE = 1.0E-015,      | dz2 0.2d0 0.00d0 0.00d0 0.00d0                       |
| # atom data             | xc_type = 'PBE',              | dzx 0.2d0 0.00d0 0.00d0 0.00d0                       |
| 3 13                    | STORE_VXC=1,                  | dx2 0.2d0 0.00d0 0.00d0 0.00d0                       |
| 1 0.000 0.000 0.000     | elec kbt=0.01/                | &param interpolation                                 |
|                         | -                             | N_sym_points=5/ !The total number of symmetry points |
| # k−points data         | # struct opt data             | 0.50 d0 0.50 d0 0.50 d0 !L                           |
| &smpl kpt               | &struct opt                   | 0.00d0 0.00d0 0.00d0 !G                              |
| dos mode =              | number cycle = 0/             | 0.50d0 0.00d0 0.50d0 !X                              |
| 'METHFESSEL PAXTON'.    |                               | 0.50d0 0.25d0 0.75d0 !W                              |
| bz mesh = 12.           | # str opt constr data         | 0.50d0 0.50d0 0.50d0 !L                              |
| bz_number_tile = 1/     | 1                             | &param_visualization                                 |
| 6 6 6                   | 0                             | FLG VIS WANNIER = 1/                                 |
| 222                     |                               | &param calc int                                      |
|                         |                               |                                                      |

# Directory structure (only principal parts)



# Job script in MateriApps LIVE!

#### > cat Al.sh

#### #!/bin/sh

#### set -x #xtapp band calculation

rm -f fort.\* Al.lpt Al.rho Al.str Al.wfn \*.log
rm -f fort.10 ; ln -s Al.cg fort.10
mpirun -np 1 inipot > log.Al-inipot
mpirun -np 1 cgmrpt > log.Al-cgmrpt
rm -f fort.10 ; ln -s Al.vb fort.10
mpirun -np 1 inipot > log.Al-inipot-vb
mpirun -np 1 vbpef > log.Al-vbpef
vbpef2gp-lsda Al.band

#### #interface:from xTAPP to respack

./xtapp2respack.sh -b ./wfn2respack -s ./strconv Al

#### #respack

mpirun -np 1 calc\_wannier < input.in > log.Al-wannier mpirun -np 1 calc\_chiqw < input.in > log.Al-chiqw mpirun -np 1 calc\_w3d < input.in > log.Al-calc\_w3d mpirun -np 1 calc\_j3d < input.in > log.Al-calc\_j3d



# Input.in RESPACK

#### > cat input.in

| &param_chiqw                                                    |
|-----------------------------------------------------------------|
|                                                                 |
| &param_wannier                                                  |
| N_wannier=9, !Total number of considerd band in wannier calc    |
| Lower_energy_window=-10.0d0, !LOWER BOUND OF ENERGY WINDOW (eV) |
| Upper_energy_window=36.0d0, !UPPER BOUND OF ENERGY WINDOW (eV)  |
| N_initial_guess=9/ !TOTAL NUMBER OF INITIAL GUESS GAUSSIAN      |
| s 0.2d0 0.00d0 0.00d0 0.00d0                                    |
| px 0.2d0 0.00d0 0.00d0 0.00d0                                   |
| py 0.2d0 0.00d0 0.00d0 0.00d0                                   |
| pz 0.2d0 0.00d0 0.00d0 0.00d0                                   |
| dxy 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dyz 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dz2 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dzx 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dx2 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| &param_interpolation                                            |
| N_sym_points=5/ !The total number of symmetry points            |
| 0.50d0 0.50d0 0.50d0 !L                                         |
| 0.00d0 0.00d0 !G                                                |
| 0.50d0 0.00d0 0.50d0 !X                                         |
| 0.50d0 0.25d0 0.75d0 !W                                         |
| 0.50d0 0.50d0 0.50d0 !L                                         |
| &param_visualization                                            |
| FLG_VIS_WANNIER = 1/                                            |
| &param_calc_int                                                 |
|                                                                 |
|                                                                 |



#### ### edit Al.cg and Al.vb ###

#### □ Al.cg (Al.vb)



#### Execute in MateriApps LIVE!

# ./Al.sh &



#### Convergence check in wannier

#### 1. Spillage functional minimization

#### > grep I\_SCF log.Al-wannier

| I_SCF= | 1  | DEL_OMEGA_I= | 31.5534368140 | OMEGA_I | 31.5534368140 |
|--------|----|--------------|---------------|---------|---------------|
| I_SCF= | 2  | DEL_OMEGA_I= | 0.0313174321  | OMEGA_I | 31.5221193819 |
| I_SCF= | 3  | DEL_OMEGA_I= | 0.0294324421  | OMEGA_I | 31.4926869398 |
| I_SCF= | 4  | DEL_OMEGA_I= | 0.0275955977  | OMEGA_I | 31.4650913421 |
| I_SCF= | 5  | DEL_OMEGA_I= | 0.0258233155  | OMEGA_I | 31.4392680266 |
| I_SCF= | 6  | DEL_OMEGA_I= | 0.0241261669  | OMEGA_I | 31.4151418597 |
| I_SCF= | 7  | DEL_OMEGA_I= | 0.0225104451  | OMEGA_I | 31.3926314146 |
| I_SCF= | 8  | DEL_OMEGA_I= | 0.0209793256  | OMEGA_I | 31.3716520890 |
| I_SCF= | 9  | DEL_OMEGA_I= | 0.0195337283  | OMEGA_I | 31.3521183607 |
|        |    |              |               |         |               |
| I_SCF= | 70 | DEL_OMEGA_I= | 0.0001840208  | OMEGA_I | 31.1054543359 |
| I_SCF= | 71 | DEL_OMEGA_I= | 0.0001706829  | OMEGA_I | 31.1052836529 |
| I_SCF= | 72 | DEL_OMEGA_I= | 0.0001583292  | OMEGA_I | 31.1051253238 |
| I_SCF= | 73 | DEL_OMEGA_I= | 0.0001468860  | OMEGA_I | 31.1049784378 |
| I_SCF= | 74 | DEL_OMEGA_I= | 0.0001362853  | OMEGA_I | 31.1048421525 |
| I_SCF= | 75 | DEL_OMEGA_I= | 0.0001264644  | OMEGA_I | 31.1047156881 |
| I_SCF= | 76 | DEL_OMEGA_I= | 0.0001173648  | OMEGA_I | 31.1045983232 |
| I_SCF= | 77 | DEL_OMEGA_I= | 0.0001089330  | OMEGA_I | 31.1044893902 |
| I_SCF= | 78 | DEL_OMEGA_I= | 0.0001011190  | OMEGA_I | 31.1043882712 |
| I_SCF= | 79 | DEL_OMEGA_I= | 0.0000938770  | OMEGA_I | 31.1042943942 |

#### Convergence check in wannier

#### 2. Spread functional minimization

#### > grep I\_STEP log.Al-wannier

I STEP SPREAD DEL SPREAD: 1 I STEP SPREAD DEL SPREAD: 2 3 I STEP SPREAD DEL SPREAD: I STEP SPREAD DEL SPREAD: 4 5 I STEP SPREAD DEL SPREAD: 6 I STEP SPREAD DEL SPREAD: I STEP SPREAD DEL SPREAD: 7 I STEP SPREAD DEL SPREAD: 8 9 I STEP SPREAD DEL SPREAD: 10 I STEP SPREAD DEL SPREAD: I STEP SPREAD DEL SPREAD: 11 I STEP SPREAD DEL SPREAD: 12 I STEP SPREAD DEL SPREAD: 13 I STEP SPREAD DEL SPREAD: 14 I STEP SPREAD DEL SPREAD: 15 16 I STEP SPREAD DEL SPREAD: I STEP SPREAD DEL SPREAD: 17 I STEP SPREAD DEL SPREAD: 18 I STEP SPREAD DEL SPREAD: 19 I STEP SPREAD DEL SPREAD: 20

60.3111523152 59.6268066188 59.4793841760 59.4113317387 59.3707982003 59.3451416542 59.3283561616 59.3172959946 59.3099463779 59.3050531688 59.3017783648 59.2995842965 59.2981086110 59.2971155254 59.2964450744 59.2959923565 59.2956856224 59.2954777580 59.2953362511 59.2952398255

60.3111523152 0.6843456964 0.1474224428 0.0680524373 0.0405335384 0.0256565460 0.0167854927 0.0110601669 0.0073496167 0.0048932091 0.0032748040 0.0021940683 0.0014756855 0.0009930856 0.0006704510 0.0004527179 0.0003067342 0.0002078644 0.0001415069 0.0000964256

#### OUTPUT in wannier: interpolated band

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

#### **OUTPUT** in wannier: transfer integral

Transfer integral  $\langle w_{i\mathbf{0}}|h_{KS}|w_{j\mathbf{R}}
angle$ 

in eV

#### > less log. Al-wannier

| 0                                                                                                                                                            | 0                                                                                                                         | 0                                                                                                                        |                                                                                                                              |                                                                                                                          |                                                                                                                         |                                                                                                                              |                                                                                                                                  |                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 7.35914211                                                                                                                                                   | 0.0000000                                                                                                                 | 0.0000000                                                                                                                | -0.0000000                                                                                                                   | 0.0000000                                                                                                                | 0.0000000                                                                                                               | 0.04394082                                                                                                                   | 0.0000000                                                                                                                        | 0.0000000                                                                                                                          |
| 0.0000000                                                                                                                                                    | 14.58743193                                                                                                               | -0.0000000                                                                                                               | -0.0000000                                                                                                                   | 0.0000000                                                                                                                | -0.0000000                                                                                                              | 0.0000000                                                                                                                    | 0.0000000                                                                                                                        | -0.0000000                                                                                                                         |
| 0.0000000                                                                                                                                                    | -0.0000000                                                                                                                | 14.58743193                                                                                                              | 0.0000000                                                                                                                    | 0.0000000                                                                                                                | -0.0000000                                                                                                              | -0.0000000                                                                                                                   | 0.0000000                                                                                                                        | -0.0000000                                                                                                                         |
| -0.0000000                                                                                                                                                   | -0.0000000                                                                                                                | 0.0000000                                                                                                                | 14.57653548                                                                                                                  | -0.0000000                                                                                                               | 0.0000000                                                                                                               | -0.0000000                                                                                                                   | -0.0000000                                                                                                                       | -0.0000000                                                                                                                         |
| 0.0000000                                                                                                                                                    | 0.0000000                                                                                                                 | 0.0000000                                                                                                                | -0.0000000                                                                                                                   | 24.40958409                                                                                                              | 0.0000000                                                                                                               | -0.0000000                                                                                                                   | 0.0000000                                                                                                                        | 0.0000000                                                                                                                          |
| 0.0000000                                                                                                                                                    | -0.0000000                                                                                                                | -0.0000000                                                                                                               | 0.0000000                                                                                                                    | 0.0000000                                                                                                                | 24. 41260139                                                                                                            | -0.0000000                                                                                                                   | 0.0000000                                                                                                                        | -0.0000000                                                                                                                         |
| 0.04394082                                                                                                                                                   | 0.0000000                                                                                                                 | -0.0000000                                                                                                               | -0.0000000                                                                                                                   | -0.0000000                                                                                                               | -0.0000000                                                                                                              | 22.91590733                                                                                                                  | -0.0000000                                                                                                                       | 0.0000000                                                                                                                          |
| 0.0000000                                                                                                                                                    | 0.0000000                                                                                                                 | 0.0000000                                                                                                                | -0.0000000                                                                                                                   | 0.0000000                                                                                                                | 0.0000000                                                                                                               | -0.0000000                                                                                                                   | 24.41260139                                                                                                                      | 0.0000000                                                                                                                          |
| 0.0000000                                                                                                                                                    | -0.0000000                                                                                                                | -0.0000000                                                                                                               | -0.0000000                                                                                                                   | 0.0000000                                                                                                                | -0.0000000                                                                                                              | 0.0000000                                                                                                                    | 0.0000000                                                                                                                        | 22.88144184                                                                                                                        |
|                                                                                                                                                              |                                                                                                                           |                                                                                                                          |                                                                                                                              |                                                                                                                          |                                                                                                                         |                                                                                                                              |                                                                                                                                  |                                                                                                                                    |
| 0                                                                                                                                                            | 0                                                                                                                         | 1                                                                                                                        |                                                                                                                              |                                                                                                                          |                                                                                                                         |                                                                                                                              |                                                                                                                                  |                                                                                                                                    |
| 0                                                                                                                                                            | 0                                                                                                                         | I                                                                                                                        |                                                                                                                              |                                                                                                                          |                                                                                                                         |                                                                                                                              |                                                                                                                                  |                                                                                                                                    |
| -0. 791 302 83                                                                                                                                               | 0.97757492                                                                                                                | 0.0000000                                                                                                                | 0.97583990                                                                                                                   | -0.0000000                                                                                                               | -0.0000000                                                                                                              | -0.36648694                                                                                                                  | -1.17118700                                                                                                                      | -0.65185254                                                                                                                        |
| -0. 791 302 83<br>-0. 977 57492                                                                                                                              | 0.97757492<br>1.03680651                                                                                                  | 0. 00000000<br>0. 00000000                                                                                               | 0.97583990<br>1.40359169                                                                                                     | -0.0000000<br>-0.0000000                                                                                                 | -0.0000000<br>-0.0000000                                                                                                | -0.36648694<br>-0.91007695                                                                                                   | -1.17118700<br>-1.53870887                                                                                                       | -0.65185254<br>-0.60532305                                                                                                         |
| -0. 791 302 83<br>-0. 977 574 92<br>0. 000 00000                                                                                                             | 0.97757492<br>1.03680651<br>-0.00000000                                                                                   | 0.00000000<br>0.00000000<br>-0.16813282                                                                                  | 0.97583990<br>1.40359169<br>-0.00000000                                                                                      | -0.0000000<br>-0.0000000<br>0.28256323                                                                                   | -0.0000000<br>-0.0000000<br>0.28649970                                                                                  | -0.36648694<br>-0.91007695<br>0.00000000                                                                                     | -1.17118700<br>-1.53870887<br>0.00000000                                                                                         | -0.65185254<br>-0.60532305<br>-0.0000000                                                                                           |
| -0. 791 302 83<br>-0. 977 574 92<br>0. 000 000 00<br>-0. 975 839 90                                                                                          | 0.97757492<br>1.03680651<br>-0.0000000<br>1.40359169                                                                      | 0.00000000<br>0.00000000<br>-0.16813282<br>0.00000000                                                                    | 0.97583990<br>1.40359169<br>-0.00000000<br>1.03814129                                                                        | -0.0000000<br>-0.0000000<br>0.28256323<br>0.0000000                                                                      | -0.0000000<br>-0.0000000<br>0.28649970<br>0.0000000                                                                     | -0.36648694<br>-0.91007695<br>0.0000000<br>-0.05409258                                                                       | -1.17118700<br>-1.53870887<br>0.0000000<br>-1.53803103                                                                           | -0.65185254<br>-0.60532305<br>-0.00000000<br>-1.09812055                                                                           |
| -0. 791 302 83<br>-0. 977 574 92<br>0. 000 000 00<br>-0. 975 839 90<br>0. 000 000 00                                                                         | 0.97757492<br>1.03680651<br>-0.0000000<br>1.40359169<br>-0.0000000                                                        | 0.0000000<br>0.0000000<br>-0.16813282<br>0.0000000<br>-0.28256323                                                        | 0.97583990<br>1.40359169<br>-0.00000000<br>1.03814129<br>-0.00000000                                                         | -0.0000000<br>-0.0000000<br>0.28256323<br>0.0000000<br>0.56865377                                                        | -0.0000000<br>-0.0000000<br>0.28649970<br>0.0000000<br>0.59795880                                                       | -0.36648694<br>-0.91007695<br>0.0000000<br>-0.05409258<br>0.0000000                                                          | -1.17118700<br>-1.53870887<br>0.00000000<br>-1.53803103<br>0.00000000                                                            | -0.65185254<br>-0.60532305<br>-0.00000000<br>-1.09812055<br>-0.0000000                                                             |
| -0. 791 302 83<br>-0. 977 574 92<br>0. 000 000 00<br>-0. 975 839 90<br>0. 000 000 00<br>-0. 000 000 00                                                       | 0.97757492<br>1.03680651<br>-0.00000000<br>1.40359169<br>-0.00000000<br>0.00000000                                        | 0.0000000<br>0.0000000<br>-0.16813282<br>0.0000000<br>-0.28256323<br>-0.28649970                                         | 0.97583990<br>1.40359169<br>-0.00000000<br>1.03814129<br>-0.00000000<br>0.00000000                                           | -0.0000000<br>-0.0000000<br>0.28256323<br>0.0000000<br>0.56865377<br>0.59795880                                          | -0.0000000<br>-0.0000000<br>0.28649970<br>0.0000000<br>0.59795880<br>0.56880611                                         | -0.36648694<br>-0.91007695<br>0.00000000<br>-0.05409258<br>0.0000000<br>0.0000000                                            | -1.17118700<br>-1.53870887<br>0.00000000<br>-1.53803103<br>0.0000000<br>0.0000000                                                | -0.65185254<br>-0.60532305<br>-0.00000000<br>-1.09812055<br>-0.00000000<br>0.00000000                                              |
| -0. 791 302 83<br>-0. 977 574 92<br>0. 000 000 00<br>-0. 975 839 90<br>0. 000 000 00<br>-0. 000 000 00<br>-0. 366 486 94                                     | 0.97757492<br>1.03680651<br>-0.0000000<br>1.40359169<br>-0.0000000<br>0.0000000<br>0.91007695                             | 0.0000000<br>0.0000000<br>-0.16813282<br>0.0000000<br>-0.28256323<br>-0.28649970<br>0.0000000                            | 0.97583990<br>1.40359169<br>-0.00000000<br>1.03814129<br>-0.0000000<br>0.0000000<br>0.05409258                               | -0.0000000<br>-0.0000000<br>0.28256323<br>0.0000000<br>0.56865377<br>0.59795880<br>-0.0000000                            | -0.0000000<br>-0.0000000<br>0.28649970<br>0.0000000<br>0.59795880<br>0.56880611<br>0.0000000                            | -0.36648694<br>-0.91007695<br>0.0000000<br>-0.05409258<br>0.0000000<br>0.0000000<br>0.88281592                               | -1.17118700<br>-1.53870887<br>0.00000000<br>-1.53803103<br>0.0000000<br>0.0000000<br>-0.60628805                                 | -0.65185254<br>-0.60532305<br>-0.00000000<br>-1.09812055<br>-0.00000000<br>0.00000000<br>-1.11961341                               |
| -0. 791 302 83<br>-0. 977 574 92<br>0. 000 000 00<br>-0. 975 839 90<br>0. 000 000 00<br>-0. 000 000 00<br>-0. 366 486 94<br>-1. 171 187 00                   | 0.97757492<br>1.03680651<br>-0.0000000<br>1.40359169<br>-0.0000000<br>0.0000000<br>0.91007695<br>1.53870887               | 0.0000000<br>0.0000000<br>-0.16813282<br>0.0000000<br>-0.28256323<br>-0.28649970<br>0.0000000<br>-0.0000000              | 0.97583990<br>1.40359169<br>-0.00000000<br>1.03814129<br>-0.00000000<br>0.00000000<br>0.05409258<br>1.53803103               | -0.0000000<br>-0.0000000<br>0.28256323<br>0.0000000<br>0.56865377<br>0.59795880<br>-0.0000000<br>0.0000000               | -0.0000000<br>-0.0000000<br>0.28649970<br>0.0000000<br>0.59795880<br>0.56880611<br>0.0000000<br>0.0000000               | -0.36648694<br>-0.91007695<br>0.0000000<br>-0.05409258<br>0.0000000<br>0.0000000<br>0.88281592<br>-0.60628805                | -1.17118700<br>-1.53870887<br>0.00000000<br>-1.53803103<br>0.0000000<br>0.00000000<br>-0.60628805<br>-2.22519781                 | -0.65185254<br>-0.60532305<br>-0.00000000<br>-1.09812055<br>-0.00000000<br>0.00000000<br>-1.11961341<br>-1.05277983                |
| -0. 791 302 83<br>-0. 977 574 92<br>0. 000 000 00<br>-0. 975 839 90<br>0. 000 000 00<br>-0. 000 000 00<br>-0. 366 486 94<br>-1. 171 187 00<br>-0. 651 852 54 | 0.97757492<br>1.03680651<br>-0.0000000<br>1.40359169<br>-0.0000000<br>0.0000000<br>0.91007695<br>1.53870887<br>0.60532305 | 0.0000000<br>0.0000000<br>-0.16813282<br>0.0000000<br>-0.28256323<br>-0.28649970<br>0.0000000<br>-0.0000000<br>0.0000000 | 0.97583990<br>1.40359169<br>-0.00000000<br>1.03814129<br>-0.00000000<br>0.00000000<br>0.05409258<br>1.53803103<br>1.09812055 | -0.0000000<br>-0.0000000<br>0.28256323<br>0.0000000<br>0.56865377<br>0.59795880<br>-0.0000000<br>0.0000000<br>-0.0000000 | -0.0000000<br>-0.0000000<br>0.28649970<br>0.0000000<br>0.59795880<br>0.56880611<br>0.0000000<br>0.0000000<br>-0.0000000 | -0.36648694<br>-0.91007695<br>0.0000000<br>-0.05409258<br>0.0000000<br>0.0000000<br>0.88281592<br>-0.60628805<br>-1.11961341 | -1.17118700<br>-1.53870887<br>0.00000000<br>-1.53803103<br>0.00000000<br>0.00000000<br>-0.60628805<br>-2.22519781<br>-1.05277983 | -0.65185254<br>-0.60532305<br>-0.00000000<br>-1.09812055<br>-0.00000000<br>0.00000000<br>-1.11961341<br>-1.05277983<br>-0.41417899 |

# **OUTPUT** in wannier: realspace Wannier

> cd dir-wan/

> vesta &

- □ File -> open -> dat.supercell-002x002x002.cif
- Edit -> Edit Data -> Volumetric data -> Import -> dat.wan-realspace-009.grd

![](_page_19_Picture_5.jpeg)

## **OUTPUT** in wannier: Fermi surface

> cd dir-wan/
> fermisurfer dat.frmsf

![](_page_20_Picture_2.jpeg)

# **OUTPUT** in wannier: DOS

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

## End check in chiqw

- dat.log.400 is end flag for chiqw calculation

#### > ls -al dir-eps/q0\*/dat.log.400

-rw-r--r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q001/dat.log.400 -rw-r--r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q002/dat.log.400 -rw-r--r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q003/dat.log.400 -rw-r-r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q004/dat.log.400 -rw-r-r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q005/dat.log.400 -rw-r-r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q006/dat.log.400 -rw-r-r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q007/dat.log.400 -rw-r--r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q008/dat.log.400 -rw-r-r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q009/dat.log.400 -rw-r-r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q010/dat.log.400 -rw-r-r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q011/dat.log.400 -rw-r--r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q012/dat.log.400 -rw-r--r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q013/dat.log.400 -rw-r-r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q014/dat.log.400 -rw-r-r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q015/dat.log.400 -rw-r-r-- 1 kazuma users 47 Dec 12 18:43 dir-eps/q016/dat.log.400

# OUTPUT in chiqw (EELS)

```
> cd dir-eps/
> gnuplot
```

gnuplot> plot `dat.eels-x ' u 1:2, `dat.eels' u 1:3

![](_page_23_Figure_3.jpeg)

# OUTPUT in chiqw (Optical conductivity)

![](_page_24_Figure_1.jpeg)

#### OUTPUT in chiqw (Reflectance)

![](_page_25_Figure_1.jpeg)

# **OUTPUT** in chiqw

> cat dir-eps/q0\*/dat.epsqw.600001 > epsq0
> gnuplot
gnuplot> plot 'epsq0' u 1:2,'epsq0' u 1:3

![](_page_26_Figure_2.jpeg)

| Scre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Screened Coulomb integral |             |                       |                         |                                |                           |                                                    |                                       |                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|-----------------------|-------------------------|--------------------------------|---------------------------|----------------------------------------------------|---------------------------------------|--------------------------------|
| $W_{ij}(\mathbf{R}% )=\left( {\mathbf{R}_{ij}}^{\prime },\mathbf{R}_{ij}^{\prime }$ | $\omega,\omega)$ =        | $=\int_{V}$ | $d\mathbf{r}\int_{V}$ | $d\mathbf{r}' w_{i0}^*$ | $\mathbf{p}(\mathbf{r})w_{i0}$ | $\mathbf{p}(\mathbf{r})W$ | $(\mathbf{r},\mathbf{r}^{\prime},\mathbf{\omega})$ | $w)w_{j\mathbf{R}}^{*}(\mathbf{r}')u$ | $y_{j\mathbf{R}}(\mathbf{r}')$ |
| > less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | log.Al-                   | -calc_      | w3d                   | !!                      | ω=                             | 0                         |                                                    |                                       | in eV                          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                         | 0           |                       |                         |                                |                           |                                                    |                                       |                                |
| 2 1 2 8 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 91160                   | 1 91129     | 1 91557               | 1 60892                 | 1 61 121                       | 1 51849                   | 1 61139                                            | 1 51439                               |                                |
| 1 91160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 53524                   | 1 34343     | 1 34330               | 1 68691                 | 1 05547                        | 1 1 7082                  | 1 68691                                            | 1 67226                               |                                |
| 1.91129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.34343                   | 2.53453     | 1.34314               | 1.68657                 | 1.68647                        | 1.17065                   | 1.05548                                            | 1.67192                               |                                |
| 1.91557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.34330                   | 1.34314     | 2.53360               | 1.05545                 | 1.68645                        | 1.92002                   | 1.68655                                            | 0.91746                               |                                |
| 1.60892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.68691                   | 1.68657     | 1.05545               | 1.77622                 | 1.17038                        | 0.96019                   | 1.17060                                            | 1.24700                               |                                |
| 1.61121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.05547                   | 1.68647     | 1.68645               | 1.17038                 | 1.77593                        | 1.17401                   | 1.17049                                            | 1.03039                               |                                |
| 1.51849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.17082                   | 1.17065     | 1.92002               | 0.96019                 | 1.17401                        | 1.80037                   | 1.17412                                            | 0.96096                               |                                |
| 1.61139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.68691                   | 1.05548     | 1.68655               | 1.17060                 | 1.17049                        | 1.17412                   | 1.77620                                            | 1.03060                               |                                |
| 1.51439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.67226                   | 1.67192     | 0.91746               | 1.24700                 | 1.03039                        | 0.96096                   | 1.03060                                            | 1.80556                               |                                |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                         | 1           |                       |                         |                                |                           |                                                    |                                       |                                |
| 0.06097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.08081                   | 0.03924     | 0.08056               | 0.05740                 | 0.05726                        | 0.08352                   | 0.11886                                            | 0.06978                               |                                |
| 0.08083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.07827                   | 0.05042     | 0.13360               | 0.06004                 | 0.08269                        | 0.14018                   | 0.14446                                            | 0.06102                               |                                |
| 0.03922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05039                   | 0.02954     | 0.05039               | 0.04420                 | 0.04417                        | 0.05074                   | 0.07851                                            | 0.04484                               |                                |
| 0.08056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.13359                   | 0.05040     | 0.07810               | 0.08274                 | 0.05993                        | 0.08251                   | 0.14438                                            | 0.11906                               |                                |
| 0.05740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.06003                   | 0.04421     | 0.08274               | 0.05745                 | 0.06993                        | 0.08160                   | 0.10210                                            | 0.05030                               |                                |
| 0.05724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.08266                   | 0.04417     | 0.05992               | 0.06992                 | 0.05736                        | 0.06020                   | 0.10203                                            | 0.07175                               |                                |
| 0.08352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.14016                   | 0.05075     | 0.08251               | 0.08159                 | 0.06021                        | 0.10249                   | 0.12832                                            | 0.13109                               |                                |
| 0.11887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.14446                   | 0.07853     | 0.14439               | 0.10211                 | 0.10205                        | 0.12833                   | 0.19369                                            | 0.11062                               |                                |
| 0.06978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.06101                   | 0.04485     | 0.11906               | 0.05030                 | 0.07176                        | 0.13109                   | 0.11061                                            | 0.04799                               |                                |

#### gnuplot> plot 'dir-intW/dat.VvsR.001', 'dir-intW/dat.WvsR.001' Bare Coulomb Screened Coulomb

![](_page_28_Figure_2.jpeg)

gnuplot> plot 'dir-intW/dat.UvsE.001-001' u 1:3, 'dir-intW/dat.UvsE.001-001' u 1:4 **Real part Imaginary part** 

![](_page_29_Figure_2.jpeg)

Screened Exchange integral

| $J_{ij}(\mathbf{R},\omega) =$ | $\int_V d\mathbf{r} \int$ | $\int_{V} d\mathbf{r}' w_{i0}^{*}(\mathbf{r}) w_{j\mathbf{R}}(\mathbf{r}) W(\mathbf{r},\mathbf{r}',\omega) w_{j\mathbf{R}}^{*}(\mathbf{r}') w_{i0}(\mathbf{r}')$ |
|-------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| > less lo | og.Al−c | alc_j3d | !       | ! ω =   | 0       |         |         | <mark>in eV</mark> |
|-----------|---------|---------|---------|---------|---------|---------|---------|--------------------|
| 0         | 0       | 0       |         |         |         |         |         |                    |
| 2.12878   | 1.28938 | 1.28885 | 1.29494 | 0.79060 | 0.79294 | 0.76539 | 0.79304 | 0.76144            |
| 1.28938   | 2.53524 | 0.48554 | 0.48555 | 0.96892 | 0.24979 | 0.47109 | 0.96902 | 1.03490            |
| 1.28885   | 0.48554 | 2.53453 | 0.48549 | 0.96913 | 0.96893 | 0.47100 | 0.24979 | 1.03459            |
| 1.29494   | 0.48555 | 0.48549 | 2.53360 | 0.24988 | 0.96897 | 1.31316 | 0.96926 | 0.18624            |
| 0.79060   | 0.96892 | 0.96913 | 0.24988 | 1.77622 | 0.42483 | 0.31966 | 0.42481 | 0.25523            |
| 0.79294   | 0.24979 | 0.96893 | 0.96897 | 0.42483 | 1.77593 | 0.27011 | 0.42484 | 0.30228            |
| 0.76539   | 0.47109 | 0.47100 | 1.31316 | 0.31966 | 0.27011 | 1.80037 | 0.27013 | 0.42547            |
| 0.79304   | 0.96902 | 0.24979 | 0.96926 | 0.42481 | 0.42484 | 0.27013 | 1.77620 | 0.30231            |
| 0.76144   | 1.03490 | 1.03459 | 0.18624 | 0.25523 | 0.30228 | 0.42547 | 0.30231 | 1.80556            |

gnuplot> plot 'dir-intJ/dat.JvsE.001-001' u 1:3, 'dir-intJ/dat.JvsE.001-001' u 1:4

Real part Imaginary part

![](_page_31_Figure_3.jpeg)

| &param_wannier                                                  |
|-----------------------------------------------------------------|
| N_wannier=9, !Total number of considerd band in wannier calc    |
| Lower_energy_window=-10.0d0,!LOWER BOUND OF ENERGY WINDOW (eV)  |
| Upper_energy_window= 36.0d0, !UPPER BOUND OF ENERGY WINDOW (eV) |
| N_initial_guess=9/ !TOTAL NUMBER OF INITIAL GUESS GAUSSIAN      |
| s 0.2d0 0.00d0 0.00d0 0.00d0                                    |
| px 0.2d0 0.00d0 0.00d0 0.00d0                                   |
| py 0.2d0 0.00d0 0.00d0 0.00d0                                   |
| pz 0.2d0 0.00d0 0.00d0 0.00d0                                   |
| dxy 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dyz 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dz2 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dzx 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dx2 0.2d0 0.00d0 0.00d0 0.00d0                                  |
|                                                                 |

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_1.jpeg)

| &param_wannier               |                                   |                 |
|------------------------------|-----------------------------------|-----------------|
| N_wannier=9,                 | !Total number of considerd band   | in wannier calc |
| Lower_energy_window=-10.0d0  | , ILOWER BOUND OF ENERGY WI       | NDOW (eV)       |
| Upper_energy_window= 36.0d0, | <b>!UPPER BOUND OF ENERGY WI</b>  | NDOW (eV)       |
| N_initial_guess=9/           | <b>!TOTAL NUMBER OF INITIAL G</b> | UESS GAUSSIAN   |
| s 0.2d0 0.00d0 0.00d0 0.00d  | dO                                |                 |
| px 0.2d0 0.00d0 0.00d0 0.00  | d0                                |                 |
| py 0.2d0 0.00d0 0.00d0 0.00  | d0                                |                 |
| pz 0.2d0 0.00d0 0.00d0 0.00  | d0                                |                 |
| dxy 0.2d0 0.00d0 0.00d0 0.00 | )d0                               |                 |
| dyz 0.2d0 0.00d0 0.00d0 0.00 | )d0                               |                 |
| dz2 0.2d0 0.00d0 0.00d0 0.00 | )d0                               |                 |
| dzx 0.2d0 0.00d0 0.00d0 0.00 | )d0                               |                 |
| dx2 0.2d0 0.00d0 0.00d0 0.00 | )dO                               |                 |

$$\exp[-0.2(r - r_g)]$$
  
$$r_g = 0.0a_1 + 0.0a_2 + 0.0a_3$$

![](_page_35_Figure_3.jpeg)

| &param wannier              |                                 |                 |     |
|-----------------------------|---------------------------------|-----------------|-----|
| N_wannier=9,                | !Total number of considerd band | in wannier calc |     |
| Lower_energy_window=-10.0d0 | ), !LOWER BOUND OF ENERGY WI    | NDOW (eV)       |     |
| Upper_energy_window=36.0d0  | , UPPER BOUND OF ENERGY WI      | NDOW (eV)       |     |
| N_initial_guess=9/          | ITOTAL NUMBER OF INITIAL G      | UESS GAUSSIAN   |     |
| s 0.2d0 0.00d0 0.00d0 0.00  | )d0                             |                 |     |
| px 0.2d0 0.00d0 0.00d0 0.00 | Opp                             |                 |     |
| py 0.2d0 0.00d0 0.00d0 0.00 | 0b0                             |                 |     |
| pz 0.2d0 0.00d0 0.00d0 0.00 | OpC                             |                 |     |
| dxy 0.2d0 0.00d0 0.00d0 0.0 | 0d0                             |                 |     |
| dyz 0.2d0 0.00d0 0.00d0 0.0 | 0d0                             |                 |     |
| dz2 0.2d0 0.00d0 0.00d0 0.0 | 0d0                             |                 |     |
| dzx 0.2d0 0.00d0 0.00d0 0.0 | 0d0                             |                 |     |
| dx2 0.2d0 0.00d0 0.00d0 0.0 | 0d0                             |                 | / / |

$$x \exp[-0.2(r - r_g)]$$
  
$$r_g = 0.0a_1 + 0.0a_2 + 0.0a_3$$

![](_page_36_Figure_3.jpeg)

| &param_wannier               |                                                 |  |
|------------------------------|-------------------------------------------------|--|
| N_wannier=9,                 | !Total number of considerd band in wannier calc |  |
| Lower_energy_window=-10.0d0  | , !LOWER BOUND OF ENERGY WINDOW (eV)            |  |
| Upper_energy_window=36.0d0,  | !UPPER BOUND OF ENERGY WINDOW (eV)              |  |
| N_initial_guess=9/           | ITOTAL NUMBER OF INITIAL GUESS GAUSSIAN         |  |
| s 0.2d0 0.00d0 0.00d0 0.00   | Oc                                              |  |
| px 0.2d0 0.00d0 0.00d0 0.00  | dO                                              |  |
| py 0.2d0 0.00d0 0.00d0 0.00  | d0                                              |  |
| pz 0.2d0 0.00d0 0.00d0 0.00  | dO                                              |  |
| dxy 0.2d0 0.00d0 0.00d0 0.00 | )d0                                             |  |
| dyz 0.2d0 0.00d0 0.00d0 0.00 | )d0                                             |  |
| dz2 0.2d0 0.00d0 0.00d0 0.00 | )d0                                             |  |
| dzx 0.2d0 0.00d0 0.00d0 0.00 | )dO                                             |  |
| dx2 0.2d0 0.00d0 0.00d0 0.00 | )dO                                             |  |

$$y \exp[-0.2(r - r_g)]$$
  
 $r_g = 0.0a_1 + 0.0a_2 + 0.0a_3$ 

![](_page_37_Figure_3.jpeg)

| &param_wannier                                    |                      |
|---------------------------------------------------|----------------------|
| N_wannier=9, !Total number of consider            | band in wannier calc |
| Lower_energy_window=-10.0d0, !LOWER BOUND OF ENER | GY WINDOW (eV)       |
| Upper_energy_window= 36.0d0, UPPER BOUND OF ENER  | GY WINDOW (eV)       |
| N_initial_guess=9/ !TOTAL NUMBER OF INIT:         | IAL GUESS GAUSSIAN   |
| s 0.2d0 0.00d0 0.00d0 0.00d0                      |                      |
| px 0.2d0 0.00d0 0.00d0 0.00d0                     |                      |
| py 0.2d0 0.00d0 0.00d0 0.00d0                     |                      |
| pz 0.2d0 0.00d0 0.00d0 0.00d0                     |                      |
| dxy 0.2d0 0.00d0 0.00d0 0.00d0                    |                      |
| dyz 0.2d0 0.00d0 0.00d0 0.00d0                    |                      |
| dz2 0.2d0 0.00d0 0.00d0 0.00d0                    |                      |
| dzx 0.2d0 0.00d0 0.00d0 0.00d0                    |                      |
| dx2 0.2d0 0.00d0 0.00d0 0.00d0                    |                      |

$$z \exp[-0.2(r - r_g)]$$
  
 $r_g = 0.0a_1 + 0.0a_2 + 0.0a_3$ 

![](_page_38_Figure_3.jpeg)

| &param_wannier                                         |                 |
|--------------------------------------------------------|-----------------|
| N_wannier=9, !Total number of considerd band           | in wannier calc |
| Lower_energy_window=-10.0d0, !LOWER BOUND OF ENERGY Wi | NDOW (eV)       |
| Upper_energy_window= 36.0d0, UPPER BOUND OF ENERGY Wi  | NDOW (eV)       |
| N_initial_guess=9/ !TOTAL NUMBER OF INITIAL G          | JESS GAUSSIAN   |
| s 0.2d0 0.00d0 0.00d0 0.00d0                           |                 |
| px 0.2d0 0.00d0 0.00d0 0.00d0                          |                 |
| py 0.2d0 0.00d0 0.00d0 0.00d0                          |                 |
| pz 0.2d0 0.00d0 0.00d0 0.00d0                          |                 |
| dxy 0.2d0 0.00d0 0.00d0 0.00d0                         |                 |
| dyz 0.2d0 0.00d0 0.00d0 0.00d0                         |                 |
| dz2 0.2d0 0.00d0 0.00d0 0.00d0                         |                 |
| dzx 0.2d0 0.00d0 0.00d0 0.00d0                         |                 |
| dx2 0.2d0 0.00d0 0.00d0 0.00d0                         |                 |

$$xy \exp[-0.2(r - r_g)]$$

$$r_g = 0.0a_1 + 0.0a_2 + 0.0a_3$$

![](_page_39_Figure_4.jpeg)

# **Results of Al**

| &param_wannier                                                  |
|-----------------------------------------------------------------|
| N_wannier=9, !Total number of considerd band in wannier calc    |
| Lower_energy_window=-10.0d0, !LOWER BOUND OF ENERGY WINDOW (eV) |
| Upper_energy_window=36.0d0, !UPPER BOUND OF ENERGY WINDOW (eV)  |
| N_initial_guess=9/ !TOTAL NUMBER OF INITIAL GUESS GAUSSIAN      |
| s 0.2d0 0.00d0 0.00d0 0.00d0                                    |
| px 0.2d0 0.00d0 0.00d0 0.00d0                                   |
| py 0.2d0 0.00d0 0.00d0 0.00d0                                   |
| pz 0.2d0 0.00d0 0.00d0 0.00d0                                   |
| dxy 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dyz 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dz2 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dzx 0.2d0 0.00d0 0.00d0 0.00d0                                  |
| dx2 0.2d0 0.00d0 0.00d0 0.00d0                                  |

![](_page_40_Picture_2.jpeg)

![](_page_40_Figure_3.jpeg)

&param wannier !Total number of considerd band in wannier calc N wannier=8, Lower energy window=-7.0d0, LOWER BOUND OF ENERGY WINDOW (eV) Upper energy window=17.0d0.!UPPER BOUND OF ENERGY WINDOW (eV) flg BMAT=1. !0:BMAT=unit matrix, 1:reading BMAT N initial guess=8/ !TOTAL NUMBER OF INITIAL GUESS GAUSSIAN s 0.5D0 0.00D0 0.00D0 0.00D0 px 0.5D0 0.00D0 0.00D0 0.00D0 pv 0.5D0 0.00D0 0.00D0 0.00D0 pz 0.5D0 0.00D0 0.00D0 0.00D0 s 0.5D0 0.25D0 0.25D0 0.25D0 px 0.5D0 0.25D0 0.25D0 0.25D0 pv 0.5D0 0.25D0 0.25D0 0.25D0 pz 0.5D0 0.25D0 0.25D0 0.25D0 0.50 -0.5D0 0.5D0 -0.5D0 0.0d0 0.0d0 0.0d0 0.0d0 0.50 0.5D0 -0.5D0 -0.5D0 0.0d0 0.0d0 0.0d0 0.0d0 0.50 -0.5D0 -0.5D0 0.5D0 0.0d0 0.0d0 0.0d0 0.0d0 0.50 0.5D0 0.5D0 0.5D0 0.0d0 0.0d0 0.0d0 0.0d0 0.00 0.0d0 0.0d0 0.0d0 0.5D0 -0.5D0 0.5D0 -0.5D0 0.00 0.0d0 0.0d0 0.0d0 0.5D0 0.5D0 -0.5D0 -0.5D0 0.00 0.0d0 0.0d0 0.0d0 0.5D0 -0.5D0 -0.5D0 0.5D0 0.00 0.0d0 0.0d0 0.0d0 -0.5D0 -0.5D0 -0.5D0 -0.5D

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_1.jpeg)

# sp<sup>3</sup> orbital of Si

![](_page_44_Picture_1.jpeg)

## sp<sup>3</sup> orbital of Si

![](_page_45_Figure_1.jpeg)

![](_page_45_Figure_2.jpeg)

 ${\mathcal X}$ 

## sp<sup>3</sup> orbital of Si

![](_page_46_Figure_1.jpeg)

# **Results of Si**

&param wannier N wannier=8. !Total number of considerd band in wannier calc Lower energy window=-7.0d0.!LOWER BOUND OF ENERGY WINDOW (eV) Upper\_energy\_window=17.0d0,!UPPER BOUND OF ENERGY WINDOW (eV) flg BMAT=1, !0:BMAT=unit matrix, 1:reading BMAT N\_initial\_guess=8/ **!TOTAL NUMBER OF INITIAL GUESS GAUSSIAN** s 0.5D0 0.00D0 0.00D0 0.00D0 px 0.5D0 0.00D0 0.00D0 0.00D0 py 0.5D0 0.00D0 0.00D0 0.00D0 pz 0.5D0 0.00D0 0.00D0 0.00D0 s 0.5D0 0.25D0 0.25D0 0.25D0 px 0.5D0 0.25D0 0.25D0 0.25D0 py 0.5D0 0.25D0 0.25D0 0.25D0 pz 0.5D0 0.25D0 0.25D0 0.25D0 0.50 -0.5D0 0.5D0 -0.5D0 0.0d0 0.0d0 0.0d0 0.0d0 0.50 0.5D0 - 0.5D0 - 0.5D0 0.0d0 0.0d0 0.0d0 0.0d0 0.50 - 0.5D0 - 0.5D0 0.5D0 0.0d0 0.0d0 0.0d0 0.0d0 0.50 0.5D0 0.5D0 0.5D0 0.0d0 0.0d0 0.0d0 0.0d0 0.00 0.0d0 0.0d0 0.0d0 0.5D0 -0.5D0 0.5D0 -0.5D0 0.00 0.0d0 0.0d0 0.0d0 0.5D0 0.5D0 -0.5D0 -0.5D0 0.00 0.0d0 0.0d0 0.0d0 0.5D0 -0.5D0 -0.5D0 0.5D0 0.00 0.0d0 0.0d0 0.0d0 -0.5D0 -0.5D0 -0.5D0 -0.5D

![](_page_47_Picture_2.jpeg)

| &param_wannier              |                                                 |
|-----------------------------|-------------------------------------------------|
| N_wannier=3,                | !Total number of considerd band in wannier calc |
| Lower_energy_window=6.5d0   | , !UPPER BOUND OF ENERGY WINDOW (eV)            |
| Upper_energy_window=9.7d0,  | !UPPER BOUND OF ENERGY WINDOW (eV)              |
| N_initial_guess=3/          | <b>!TOTAL NUMBER OF INITIAL GUESS GAUSSIAN</b>  |
| dxy 0.5d0 0.5d0 0.5d0 0.5d0 |                                                 |
| dyz 0.5d0 0.5d0 0.5d0 0.5d0 |                                                 |
| dzx 0.5d0 0.5d0 0.5d0 0.5d0 |                                                 |

![](_page_49_Figure_1.jpeg)

![](_page_50_Figure_1.jpeg)

## Visualize Bloch function at a k point

![](_page_51_Figure_1.jpeg)

#### Visualize Bloch function at a k point

![](_page_52_Figure_1.jpeg)

#### &param\_wannier

N\_wannier=3,!Total number of considerd band in wannier calcLower\_energy\_window=6.5d0, !UPPER BOUND OF ENERGY WINDOW (eV)Upper\_energy\_window=9.7d0, !UPPER BOUND OF ENERGY WINDOW (eV)N\_initial\_guess=3/!TOTAL NUMBER OF INITIAL GUESS GAUSSIANdxy 0.5d0 0.5d0 0.5d0 0.5d0.5d0 0.5d0 0.5d0dzx 0.5d0 0.5d0 0.5d0 0.5d0.5d0

![](_page_53_Figure_3.jpeg)

## Result of SrVO3

#### &param\_wannier

N\_wannier=3,!Total number of considerd band in wannier calcLower\_energy\_window=6.5d0, !UPPER BOUND OF ENERGY WINDOW (eV)Upper\_energy\_window=9.7d0, !UPPER BOUND OF ENERGY WINDOW (eV)N\_initial\_guess=3/!TOTAL NUMBER OF INITIAL GUESS GAUSSIANdxy 0.5d0 0.5d0 0.5d0 0.5d0.5d0 0.5d0 0.5d0dzx 0.5d0 0.5d0 0.5d0 0.5d0.5d0

![](_page_54_Picture_3.jpeg)

## Input.in for constrained RPA -SrVO3-

```
&param_chiqw
flg_cRPA=1/ ! 0: full-RPA, 1: constrained RPA
&param_wannier
N_wannier=3, !Total number of considerd band in wannier calc
Lower energy window=6.5d0,!UPPER BOUND OF ENERGY WINDOW (eV)
Upper_energy_window=9.7d0,!UPPER BOUND OF ENERGY WINDOW (eV)
                         !TOTAL NUMBER OF INITIAL GUESS GAUSSIAN
N_initial_guess=3/
dxy 0.50d0 0.50d0 0.50d0 0.50d0
dyz 0.50d0 0.50d0 0.50d0 0.50d0
dzx 0.50d0 0.50d0 0.50d0 0.50d0
&param_interpolation
N_sym_points=5/ !Number of symmetry points
0.50d0 0.50d0 0.50d0 !R
0.00d0 0.00d0 0.00d0 !G
&param_visualization
&param_calc_int
```

**Diagonal part of Coulomb interaction** 

![](_page_56_Figure_1.jpeg)

**Off-Diagonal part of Coulomb interaction** 

![](_page_57_Figure_1.jpeg)

#### &param\_wannier

N\_wannier=1,!Total number of considerd band in wannier calcLower\_energy\_window= 9.0d0,!LOWER BOUND OF ENERGY WINDOW (eV)Upper\_energy\_window=14.6d0,!UPPER BOUND OF ENERGY WINDOW (eV)set\_inner\_window=T,!flag for inner windowLower\_inner\_window=11.60d0,!Lower inner energy window for wannier calc (eV)Upper\_inner\_window=12.30d0,!Upper inner energy window for wannier calc (eV)N\_initial\_guess=1/!TOTAL NUMBER OF INITIAL GUESS GAUSSIANdx2 0.5d00.0d0000.0d000

![](_page_59_Figure_1.jpeg)

![](_page_59_Figure_2.jpeg)

# &param\_wannierN\_wannier=1,!Total number of considerd band in wannier calcLower\_energy\_window= 9.0d0,!LOWER BOUND OF ENERGY WINDOW (eV)Upper\_energy\_window=14.6d0,!UPPER BOUND OF ENERGY WINDOW (eV)set\_inner\_window=T,!flag for inner windowLower\_inner\_window=11.60d0,!Lower inner energy window for wannier calc (eV)Upper\_inner\_window=12.30d0,!Upper inner energy window for wannier calc (eV)N\_initial\_guess=1/!TOTAL NUMBER OF INITIAL GUESS GAUSSIANdx2 0.5d0 0.0d000 0.0d000

![](_page_60_Figure_2.jpeg)

4

![](_page_61_Figure_1.jpeg)

#### &param\_wannier

N\_wannier=1,!Total number of considerd band in wannier calcLower\_energy\_window= 9.0d0,!LOWER BOUND OF ENERGY WINDOW (eV)Upper\_energy\_window=14.6d0,!UPPER BOUND OF ENERGY WINDOW (eV)set\_inner\_window=T,!flag for inner windowLower\_inner\_window=11.60d0,!Lower inner energy window for wannier calc (eV)Upper\_inner\_window=12.30d0,!Upper inner energy window for wannier calc (eV)N\_initial\_guess=1/!TOTAL NUMBER OF INITIAL GUESS GAUSSIANdx2 0.5d0 0.0d000 0.0d000

![](_page_62_Figure_3.jpeg)

# Result of La2CuO4

&param\_wannier N\_wannier=1, !Total number of considerd band in wannier calc Lower\_energy\_window= 9.0d0,!LOWER BOUND OF ENERGY WINDOW (eV) Upper\_energy\_window=14.6d0,!UPPER BOUND OF ENERGY WINDOW (eV) set\_inner\_window=T, !flag for inner window Lower\_inner\_window=11.60d0,!Lower inner energy window for wannier calc (eV) Upper\_inner\_window=12.30d0,!Upper inner energy window for wannier calc (eV) N\_initial\_guess=1/ !TOTAL NUMBER OF INITIAL GUESS GAUSSIAN dx2 0.5d0 0.0d000 0.0d000

![](_page_63_Figure_2.jpeg)

#### Transfer\_analysis: FeSe (6x6x4 k)

![](_page_64_Figure_1.jpeg)